之后的林晓,也继续和其他几位名气颇高的教授认识了一番,包括萨纳克教授、怀尔斯教授等几位,他也算是第一次见到萨纳克教授,对于萨纳克教授当初给他论文的评价,他还是很感谢的。
而怀尔斯教授则对德利涅刚才打断自己的讲话抱怨了几句,不过林晓也算是从其他几位教授口中得知了这位怀尔斯教授的口头禅。
那就是“我当初证明费马大定理的时候……”。
对此,林晓也是哭笑不得,不过也可以理解,毕竟,怀尔斯也是唯一一个被颁发了菲尔兹特别奖的人,经常提这件事情也可以理解。
而且怀尔斯之所以对这项成就如此骄傲,也和他与费马大定理的缘分有关,因为,他从10岁开始,就接触了费马大定理,然后就想着自己有朝一日能够完成对这个问题的证明,而直到他四十一岁的时候,便终于完成了儿时的梦想。
相信对于任何人来说,这样的成就都是值得纪念一生的事情。
而他们聊着天的时候,周围又有几人走了上来,主动和林晓攀谈起来,而其中有两位,赫然是本届国际数学家大会的两位菲尔兹奖得主。
显然,林晓在今天报告上的表现,让他们都愿意主动认识了。
周围其他人看着他们这里,都不由羡慕起林晓来,能和这么多大牛亲密交谈,一般来说,也只有另外一个大牛了。
但林晓现在还是不是大牛,这件事情还另说,只不过对于他们所有人来说,林晓的年龄,已经注定了他在未来学术界的地位,必然不会很低。
就像怀尔斯教授刚才说的那样,‘未来的林教授’。
说不定,以后还会变成未来的菲奖得主呢?
……
观众席中间的位置,十几名学生看着最前面和其他著名数学家们聊天的林晓,仿佛在看着神仙。
“林神提出了一个猜想吗?”一位本科生茫然地说道。
“是的,是一个猜想,而且还是一个非常重要的猜想。”
另外一名博士生点了点头,语气充满不可思议:“代数几何沟通了代数和几何间的沟壑,而格罗滕迪克奠定的现代代数几何学,在部分意义上统一了数学,而林神的这个猜想,则将让这个统一更加深入一步。”
“这可是要彻底的将函数和几何联系在一起啊……”
听着这位学长的话,其他人都是不明觉厉,显然他们不是所有人都研究代数几何。
“只能说牛逼666了。”
“新的猜想……林神刚才解决了周氏猜想和梅森素数的分布规律,转头又提出了一个新的猜想,还让那位德利涅教授都要感谢他提出这个问题……我啥时候能有林神十分之一就好了。”
“别十分之一了,百分之一就足够了。”
“唉,人与人之间的差距就这么大吗?”
他们都是叹了口气,尤其再想到林晓的年龄,人家连大学都还没上呢。
他要是再去上大学的话,怕是就跟满级大佬进入新手村一样了。
也不知道到时候和林晓做同学的学生们,压力该有多大啊。
“人与人之间差距不大,但人与神之间的差距很大。”
有人安慰了一句。
“……说的也是。”
这时,袁亚院长招呼了一声:“好了,大家准备走吧。”
这些学生们都应了一声,然后开始收拾自己的东西,为了表示他们有在认真听,基本上人人都带了个笔记本,但显然他们并没有记下什么有用的东西。
秘书长龚洲这时问道:“我们不用等一下林晓吗?”
“不用等了,看他那情况,大概待会儿还得和那些教授们喝一杯吧。”
袁亚指了指前面那边,摆摆手,“那些外国人都喜欢这样。”
“哦。”龚洲点了点头,但还是向前面看了看,不由说了句:“真是让人担心啊。”
袁亚一愣,问道:“担心什么?”
“要是林晓被他们拐到国外去咋办,这对咱们国内数学界可是一种损失啊,好不容易能出这样一个人才……”
袁亚沉默片刻,摇摇头:“这种事情,我们也管不上啊。”
龚洲一听,也叹了口气。
“确实。”
对于国内的大环境,他们每个人都知道是什么情况,但是也正因为是大环境,所以没有人能够改变这样的境况。
毕竟,人是自由的,像前苏联时期,前苏联有科学家获得了诺贝尔奖,也被苏联当局禁止领奖,当然,这也不排除是为了保护他们的科学家,避免出国后背后身中八枪自杀。
但是在外人听来,政府阻止人去领取荣誉,显然是一种昏聩的做法,尤其是到了现代。
所以国内也不可能要求国内的人回国。
“只能暂时相信他吧。”
袁亚摇摇头:“哪怕出了国一段时间,只要记得回来就好。”
“说不定回来之后又出去了呢?”
这时,旁边的徐晨说了一句。
袁亚笑道:“都愿意回来了,说明心还是在国内的嘛。”
“这也得看国内的环境能不能让回来的人心里满意了。”
听到徐晨这么说,袁亚摇摇头,没有多说,谈多了,隔墙有耳啊。
……
时间很快过去。
关于这场报告的事情,也很快传了出去。
梅森素数分布规律的最终确定,让曾经对相关课题有过研究的人,都不由生出了感慨,当初研究这个问题的时候,他们每个人几乎都被那简单却又挠人的2^p-1给困扰过,而如今,这个问题也总算被终结了,对于不少人来说,这甚至算是解决了他们的一个心结。
而对于GIMPS,即互联网梅森素数大搜寻项目来说,这篇论文的出现,也宣布着他们的项目可以就此画上句号了,因为,接下来只需要根据林晓论文中的理论,输入到电脑中,然后电脑就能够将一个个数字给确定出来,再也不需要像往常那样完全撞运气了,他们将有足够多的时间发现更大的梅森素数,包括那些漏网之鱼。
于是仅仅过去了一个周,就有一个漏网之鱼被发现,同样还有一个更大的梅森素数也成功被发现,这个新的素数为2^82589933-1,总共有两千四百八十多万位数,比原来发现的那个多了一百六十多万位数。
GIMPS发现这两个新的梅森素数,也是对林晓的成果最有力的证明,毕竟,仅仅在这个短的时间里,就用他的理论发现了两个,而中间没有遇见任何问题,就足以说明他的理论是正确的了。
当然,林晓的林氏群变换法,也得到了诸多参会数学家们的一致好评,并且称这种方法为郎兰兹纲领的研究提供了一定的助力,特别是其中对于模形式论的运用,让许多数学家都是眼前一亮。
而本场会议中的最大亮点,自然还是林晓在最后提出的那个猜想。
能够将所有函数转换为几何中‘层’的形式,这个消息几乎是从报告就结束之后,就直接传遍了整个数学界,顿时就在数学界中引起了一番地震。
代数几何在当代数学中的地位是相当之高的,尤其是格罗滕迪克奠定了现代代数几何之后,就更是如此了。
光是看看每届菲尔兹奖得主的获奖原因就知道,几乎每届都会有一位得主是由于在代数几何领域上的突破而得到这个奖,像本届得主中的舒尔茨就是如此。
而研究代数几何的数学家,也相当之多。
所以,林晓的这一猜想,直接就让他们每个人都激动不已,因为他们仿佛都看到了未来的方向。
于是,这些研究代数几何方面的大佬们,那些没有来参加国际数学家大会的,就都直接下载了林晓的论文,同时还有他那张小黑板的照片,看林晓的论文,是为了了解他是如何提出这个问题的,而问题的本体,自然就是在那张小黑板上面。
之后这些大佬们就纷纷开始了对这个问题的研究,有不少人更是直接放下了手中的问题。
只不过,当他们深入研究了几天之后,就发现这个问题似乎并不是那么好解决。
他们绞尽脑汁,想要证明K=1的情形下成立,然而没有人能够成功。
不过,虽然证明不了,他们却可以直接利用K=1的形式,直接将这个结果代入进他们想要转化的函数之中,将其转换为层的形式,而结果就如林晓预测的那样,他们成功了,他们成功地将函数转换为了层的形式。
但问题是,因为没有证明这个理论的成立,所以即使他们转换过去了,他们也不能保证转换过来这个的函数层,就真的是原来的那个函数了,谁知道其本质有没有发生变化呢。
就比如哆啦A梦的缩小隧道,谁能保证经过缩小隧道的大熊在变小后,是不是还是原来的那个大熊?
这就需要证明了。
但不管如何,人们也就暂且当做它成立,然后直接开始用起了这个转换为层后的函数。
就像黎曼猜想,先假设它成立,然后发展出了其他的理论,至今已有一千多个定理出现,但只有黎曼猜想证明成功,这些‘伪’定理才能升级为‘真’定理。
也正是因为如此,这些数学家们都对林氏猜想做出了较高的评价。
包括德利涅教授,就在这场报告结束的几天后,接受来自一家媒体的采访。
“德利涅子爵,请问您如何评价这个林氏猜想?”
“我必须得承认,林氏猜想给我们的代数几何带来了更多可能,相信在未来的十年内,研究这个问题也会成为我们代数几何界的主流。”
请收藏本站阅读最新小说 m.feisxs.com
飞速中文唯一官网:feibzw.com 备用域名:feisxs.com